
Operating System Nouhad J. Rizk 1
1

Lab 2

The UNIX File System

Operating System Nouhad J. Rizk 2
2

UNIX Files

• Definition: All data on UNIX systems is structured as
files. Ordinary files are simply a collection of bytes with
no structure imposed by the operating system.

– Ordinary files are determined to be in structures such as flat
text, arguments, source code or binary executable by the
UNIX programs (including the shell) that read them rather
than by the operating system itself. This is different from
other operating systems such as MVS or Windows.

– All files are considered ordinary except for two types:
• Directories are special files that contain pointers to the

filenames of the files contained in the directory. Directory
files are represented with a special character (/).

• Special files are used to represent peripheral devices such as
storage devices, printers and terminals.

– All files contain a special descriptor called an inode. Each
inode contains the following information about the file:

• The userid of the owner of the file

• The groupid of the group of the file

• The size of the file (in blocks)

• The permissions of the file

• The date and time of the last modification to the file

• The link count

– All directories contain pointers to the filename and the
inode number of each file.

Operating System Nouhad J. Rizk 3
3

Directory Navigation - cd and pwd commands

• To change the current directory, use the cd command:
$ cd /home/ds59478

$

• To print the current directory, use the pwd command:
$ pwd

/home/ds59478

$

• There are different ways to use cd:

$ cd .. (takes you to parent directory)

$ cd - (takes you to last directory you were in)

$ cd ~ (takes you to home directory)

$ cd /home/bob (full pathname)

$ cd ../bob (relative pathname)

$ cd ~bob (bob’s home directory)

Operating System Nouhad J. Rizk 4
4

File System Hierarchy - the df command

• The file system for each UNIX machine is laid out in a
hierarchy that begins with the root (/) directory. To
display all of the mounted filesystems (and the logical
volumes to which they are mapped), use the df
command:
$ df -k (The -k option displays disk space in kb)

• Each UNIX machine has a different file system
hierarchy, but below is an example of a typical AIX
structure: /

/usr /dev /home /sbin /etc /var /tmp /nfs

...
/home/user1 /home/user2

...

/home/user1/bin.profile
file1
...

file2
prog1
...

Operating System Nouhad J. Rizk 5
5

Creating and Removing Directories - mkdir and rmdir

• To create a new directory, use the mkdir command:
$ pwd
/u/ds59478
$ mkdir stuff
$ cd stuff
$ pwd
/u/ds59478/stuff
$

• To remove a directory, use the rmdir command:
$ cd ..
$ pwd
/u/ds59478
$ rmdir stuff
$ cd stuff
_cd[2]: stuff: not found.
$

• For the rmdir command to work, these must be true:
– The directory must be empty
– The directory must not be the current directory.

Operating System Nouhad J. Rizk 6
6

Creating and Removing Files - echo and rm

• There are many ways to create new files. For a simple
example, the echo command can be used:
$ mkdir stuff
$ cd stuff

$ echo This is a test > test

• In this case, the output of the echo command is redirected
to a new file that is called test. The (>) symbol facilitates
this redirection. Using this technique, any UNIX
program that produces output can create a file.

• To remove a file, use the rm command:
$ echo This is a test > test
$ rm test
$

• Note: These are the first destructive commands that we
have covered to this point. Unlike other operating
systems, UNIX does not ask for confirmation before it
removes the file. Also, when you create a file via
redirection (>), it will overwrite a file that already exists
without asking for confirmation.

Operating System Nouhad J. Rizk 7
7

A Word on Filenames

• In the spirit of UNIX, filenames have very few
restrictions on them. There is a limit as to the size of the
filename that is usually ridiculously large (AIX is 255
characters). In general, all characters are fair game, but it
is important to follow certain guidelines to prevent
troubles down the road. Generally, filenames should:

– not contain imbedded blanks

– generally be restricted to alphanumeric characters

– should not include metacharacters (*?></:$![]{}| \`”)

– be case sensitive (usually lowercase unless special)

– only start with . if meant to be hidden

– never begin with a + or -

– generally be descriptive of the content

• The reasons for these restrictions will become clearer as
we learn more about UNIX and using the shell. For now,
it is a good idea to remember these guidelines when
creating files.

Operating System Nouhad J. Rizk 8
8

Listing Files and Their Contents - ls, cat and touch

• The cat command prints the contents of the file to the
screen. Below is an example:
$ echo this is a test > test
$ cat test
this is a test
$

• The ls command lists the files and sub-directories in the
current working directory:
$ ls
newdir test
$

• To further illustrate this, we can use the touch command
which creates files of binary length zero:
$ touch file1 file2 file3 file4
$ ls
file1 file2 file3 file4 newdir
test
$

Operating System Nouhad J. Rizk 9
9

Long Listing of Files - ls -l

• With no other options, the ls command gives you no
information about the files it is listing other than the file
name. With the -l option, there is much more information
provided about each file:
$ ls -l
total 16
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file1
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file2
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file3
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file4
drwxrwxr-x 2 ds59478 dasd 512 Dec 27 13:12 newdir
-rw-rw-r-- 1 ds59478 dasd 15 Dec 28 23:59 test
$

• The long listing provides in fields all of the information that is
stored in the inode of the file. Below is a summary of each field:
(1) The file type and the permission bits
(2) The link count
(3) The name of the owner of the file
(4) The name of the group of the file
(5) The size of the file in bytes
(6) The date the file was last modified
(7) The filename

Operating System Nouhad J. Rizk 10
10

File Types and Permission Bits

• The first bit of the first column on a long listing of a file
indicates the file type. It is as follows:

– blank (-) indicates an ordinary file

– d indicates a directory file

– other letters (such as b,c or l) indicate a special file

• The next 9 bits indicate the permissions of the file. They
consist of a read, write and execute bit for the owner of
the file, the group of the file and all others. Each bit is
either represented by the r,w or x (if on) or the blank (-) if
off. Below is a summary of their meanings:

– For an ordinary file:
• r = permission to look at the contents of the file

• w = permission to change the contents of the file

• x = permission to execute file as a command

– For a directory file:
• r = permission to list the files in the directory

• w = permission to create and remove files in directory

• x = permission to make it the current directory

Operating System Nouhad J. Rizk 11
11

Octal Notation and Permission Bits

• The permission bits are often summarized by looking at each
group of three bits as an octal number. In octal notation, each
bit holds a place as follows:

– r = 2**2 = 4 +

– w = 2**1 = 2 +

– x = 2**0 = 1 = octal permission

• Each bit is either on or off, which represents a number for the
group of three. There are a total of three numbers with one
representing owner, group and other.

• Therefore, we can read the permissions as 664 for each file and
775 for the directory for the example below:
$ ls -l
total 16
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file1
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file2
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file3
-rw-rw-r-- 1 ds59478 dasd 0 Dec 29 00:05 file4
drwxrwxr-x 2 ds59478 dasd 512 Dec 27 13:12 newdir
-rw-rw-r-- 1 ds59478 dasd 15 Dec 28 23:59 test
$

Operating System Nouhad J. Rizk 12
12

Changing Permission Bits - chmod

• To change the permission bits, you can use the chmod
command with the octal notation below is an example:
$ ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 27 13:12 newdir
-rw-rw-r-- 1 ds59478 dasd 15 Dec 28 23:59 test
$ chmod 775 test
$ ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 27 13:12 newdir
-rwxrwxr-x 1 ds59478 dasd 15 Dec 28 23:59 test
$

• By changing the permission bits to 775, the execute bit has
been turned on for the owner, group and others.

• Permission bits can also be changed with symbolic notation.
By using u for owner, g for group, o for other and a or blank
for all, any of the read, write or execute bits can be added
using a (+) sign, reduced using a (-) sign or set explicitly using
the (=) sign. Below are examples:

$ chmod o+w (permits write for others)
$ chmod go-r (restricts read from group and others)
$ chmod +x (adds execute for all)

Operating System Nouhad J. Rizk 13
13

Linking Files - ln command

• The second column of the long listing is the count of links to
a file. Use the ln command to add a link. This command
creates a file that has the same inode number as an existing
file. The link file is the same physical file as the original file
that can be accessed by a different name. Below is a
dialogue to demonstrate:

$ echo this is a test > test

$ ls -l
total 8
-rw-rw-r-- 1 ds59478 dasd 15 Dec 29 16:52 test
$ ln test link_to_test
$ ls -l
total 16
-rw-rw-r-- 2 ds59478 dasd 15 Dec 29 16:52 link_to_test
-rw-rw-r-- 2 ds59478 dasd 15 Dec 29 16:52 test
$ rm test
$ ls -l
total 8
-rw-rw-r-- 1 ds59478 dasd 15 Dec 29 16:52 link_to_test
$

Operating System Nouhad J. Rizk 14
14

Changing the Owner and Group - chown and chgrp

• The third and fourth columns of the long listing are the owner
and the group with permissions to the file. The owner can be
changed with the chown command:
ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 29 17:05 newdir
-rwxrwxr-x 1 dasd dasd 15 Dec 28 23:59 test
chown ds59478 test
ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 29 17:05 newdir
-rwxrwxr-x 1 ds59478 dasd 15 Dec 28 23:59 test
#

• The group can be changed with the chgrp command:
ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 29 17:05 newdir
-rwxrwxr-x 1 ds59478 dasd 15 Dec 28 23:59 test
chgrp sys test
ls -l
total 16
drwxrwxr-x 2 ds59478 dasd 512 Dec 29 17:05 newdir
-rwxrwxr-x 1 ds59478 sys 15 Dec 28 23:59 test

Operating System Nouhad J. Rizk 15
15

Default Permissions - umask

• The umask specifies what permissions will be set
by default on new files and directories. It is
represented as an octal number from which the
default file (666) and directory (777) permissions
are subtracted. For example:
– umask 000 = 666 for files and 777 for directories

– umask 002 = 664 for files and 775 for directories

– umask 022 = 644 for files and 755 for directories

• In AIX, a default umask of 022 is automatically set
up. This can be changed by the root user of the
system.

• The default umask can be set for each user in their
user profile. User profiles will override the default.

• On many UNIX systems, the umask that users have
specified in their profile has become the subject of
security audits.

Operating System Nouhad J. Rizk 16
16

Hidden Files – ls –al command

• On UNIX file systems, filenames that begin with a dot (.) are hidden.
In order to see the hidden files on a system, the –a option must be used
with the ls command. When combined with the long listing, the
command is ls –al as seen below:

$ cd ~

$ ls -al

total 88

drwxr-xr-x 6 ds59478 dasd 512 Dec 29 16:52 .

drwxr-sr-x 128 root tla 2560 Nov 10 11:56 ..

-rw------- 1 ds59478 dasd 400 Aug 5 17:06 .Xauthority

-rw-r----- 1 ds59478 dasd 185 Nov 11 1998 .Xdefaults

-rw-r----- 1 ds59478 dasd 74 May 21 1998 .exrc

-rw-r----- 1 ds59478 dasd 1144 Nov 11 1998 .profile

-rw------- 1 ds59478 dasd 2880 Dec 31 03:20 .sh_history

drwxr-xr-x 2 ds59478 dasd 512 Mar 8 1999 .ssh

drwxr-sr-x 2 ds59478 dasd 512 May 21 1998 bin

drwxr-sr-x 2 ds59478 dasd 512 May 21 1998 etc

drwxrwxr-x 3 ds59478 dasd 512 Dec 29 04:32 stuff

$

• The . file represents the current directory and the .. file represents the
parent directory in the file system.

• The ~/.profile file contains the user profile. Statements executed at
login time set the user’s preferences.

	Lab 2The UNIX File System
	UNIX Files
	Directory Navigation - cd and pwd commands
	File System Hierarchy - the df command
	Creating and Removing Directories - mkdir and rmdir
	Creating and Removing Files - echo and rm
	A Word on Filenames
	Listing Files and Their Contents - ls, cat and touch
	Long Listing of Files - ls -l
	File Types and Permission Bits
	Octal Notation and Permission Bits
	Changing Permission Bits - chmod
	Linking Files - ln command
	Changing the Owner and Group - chown and chgrp
	Default Permissions - umask
	Hidden Files – ls –al command

